| 解:(1)①在Rt△ABC中,D是AB的中点, ∴AD=BD=CD= 又∵∠A=30°, ∴∠ACD=60°﹣30°=30°, 又∵∠CDE=60°,或∠CDF=60°时, ∴∠CKD=90°, ∴在△CDA中,AM(K)=CM(K), 即AM(K)=KM(C)(等腰三角形底边上的垂线与中线重合), ∵CK=0,或AM=0, ∴AM+CK=MK; ②由①,得∠ACD=30°,∠CDB=60°, 又∵∠A=30°,∠CDF=30,∠EDF=60°, ∴∠ADM=30°, ∴AM=MD,CK=KD, ∴AM+CK=MD+KD, ∴在△MKD中,AM+CK>MK(两边之和大于第三边); (2)> 证明:作点C关于FD的对称点G, 连接GK,GM,GD,则CD=GD,GK=CK,∠GDK=∠CDK, ∵D是AB的中点, ∴AD=CD=GD、 ∵∠A=30°, ∴∠CDA=120°, ∵∠EDF=60°, ∴∠GDM+∠GDK=60°,∠ADM+∠CDK=60°. ∴∠ADM=∠GDM, ∵DM=DM, ∴ ∴△ADM≌△GDM,(SAS) ∴GM=AM ∵GM+GK>MK, ∴AM+CK>MK; (3)由(2),得GM=AM,GK=CK, ∵MK2+CK2=AM2, ∴MK2+GK2=GM2, ∴∠GKM=90°, 又∵点C关于FD的对称点G, ∴∠CKG=90°,∠FKC= 又有(1),得∠A=∠ACD=30°, ∴∠FKC=∠CDF+∠ACD, ∴∠CDF=∠FKC﹣∠ACD=15°, 在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°, ∴∠GMK=30°, ∴ ∴ |
科目:初中数学 来源: 题型:
| ||
| 2 |
| AC |
| CM |
| BC |
| CA |
| CM |
| AB |
| 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
2
| ||
| π |
2
| ||
| π |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com