精英家教网 > 初中数学 > 题目详情
计算:3.13-8
3
7
+2.87-
4
7
原式=6-(8+
3
7
+
4
7

=6-9
=-3.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为
100
n=1
n
,这里“
 
 
”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
50
n=1
(2n-1)
;又如“13+23+33+43+53+63+73+83+93+103”可表示为
10
n=1
n3
.同学们,通过对以上材料的阅读,请解答下列问题:
①2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为
 

②计算:
5
n=1
(n2-1)
=
 
(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

研究下列算式,你会发现有什么规律?
①13=12
②13+23=32
③13+23+33=62
④13+23+33+43=102
⑤13+23+33+43+53=152
(1)根据以上算式的规律,请你写出第⑥算式;
(2)用含n(n为正整数)的式子表示第n个算式;
(3)请用上述规律计算:63+73+83+…+203

查看答案和解析>>

科目:初中数学 来源: 题型:

读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为
100
n=1
n
,这里“
”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
50
n=1
(2n-1)
;又如“13+23+33+43+53+63+73+83+93+103”可表示为
10
n=1
n3
.同学们,通过对以上材料的阅读,请解答下列问题:
①2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为
50
n=1
2n
50
n=1
2n

②计算:
5
n=1
(n2-1)
=
50
50
(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)4-3×(-1)
(2)-32×2-24÷(-
8
3

(3)
25
+(
3-
1
27
+
1
3
 )
(4)(-24)×(
1
8
-
1
3
+
1
4
)+(-22

查看答案和解析>>

科目:初中数学 来源: 题型:

计算题
(1)-16+23+(-17)-(-7)
(2)-81÷
9
4
×
4
9
÷16

(3)(-4)×8×(-2.5)×0.1×(-0.125)×10     
(4)-12008-[5×(-2)-(-23)]
(5)[1-(1-0.5×
1
3
)]×[2-(-3)2]
;   
(6)(
7
4
-
7
8
-
7
12
)÷(-
7
8
)+(-
8
3
)

查看答案和解析>>

同步练习册答案