精英家教网 > 初中数学 > 题目详情

如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与原点O关于直线l对称.反比例函数y=数学公式的图象经过点C,点P在反比例函数图象上且位于C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点.
(1)求反比例函数的解析式;
(2)求AN•BM的值.

解:(1)连接AC,BC,由题意得:四边形AOBC为正方形,
对于一次函数y=x+1,令x=0,求得:y=1;令y=0,求得:x=-1,
∴OA=OB=1,
∴C(-1,1),
将C(-1,1)代入y=得:1=,即k=-1,
则反比例函数解析式为y=-

(2)过M作ME⊥y轴,作ND⊥x轴,
设P(a,-),可得ND=-,ME=|a|=-a,
∵△AND和△BME为等腰直角三角形,
∴AN=×(-)=-,BM=-a,
则AN•BM=-•(-a)=2.
分析:(1)连接AC,BC,由题意得:四边形AOBC为正方形,对于一次函数解析式,分别令x与y为0求出对于y与x的值,确定出OA与OB的值,进而C的坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;
(2)过M作ME⊥y轴,作ND⊥x轴,根据P在反比例解析式上,设出P坐标得出ND的长,根据三角形AND为等腰直角三角形表示出AN与BM的长,即可求出所求式子的值.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,以及等腰直角三角形的性质,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案