精英家教网 > 初中数学 > 题目详情
10、如图,D在△ABC的边AB上,过D作直线(不与AB重合)截△ABC,使得所截三角形与原三角形相似,满足这样条件的直线最多有(  )条.
分析:根据相似三角形的判定方法可知:以AD为边,作∠ADM=∠B或∠C即可得出△ADM∽△ABC或△ADM∽△ACB;同理以BC为边也可得出两种作法,因此满足条件的直线共有4条.
解答:解:如图:过D作直线DE∥BC,交AC于E;作DF∥AC,交BC于F;
过D作直线DG,交AC于G,使得∠ADG=∠C;同理可作直线DH,交BC于H,使得∠BDH=∠C;
因此符合条件的直线共有4条.
故选B
点评:此题考查了相似三角形的判定:
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、如图,分别在△ABC的AB、AC两边上向外作正方形ABDE和ACFG,连接EC、BG.问图中存在一个图形是由另一个图形绕某点沿某个方向旋转某个角度所得吗?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC的BC边上任取点D,由于△ABD与△ACD在BD和CD边上的高相同,所以△ABD与△ACD的面积比为BD:CD.
(1)如图2,若△ABC的面积为12,BD:CD=2:1,BE是△ABD的中线,则△ABE的面积为
 

(2)如图3,若△BOC的面积为5,△OCD的面积为3,△OBE的面积为4,求阴影部分四边形AEOD的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图点D在△ABC的AB边上,AD=BD=CD=1,延长BC至E,BC=CE,连接AE,则AE=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D在△ABC的边BC上,且BC=BD+AD,则点D在
AC
AC
的垂直平分线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案