精英家教网 > 初中数学 > 题目详情

作业宝已知如图,A、B两点的坐标分别为A(0,2数学公式),B(2,0),直线AB与反比例函数y=数学公式的图象交于C和D(-1,a)
(1)求直线AB和双曲线的解析式;
(2)求∠ACO的度数;
(3)将△OBC绕O逆时针方向旋转角α(α为锐角)得到OB′C′,当α=______度时OC′⊥AB.

解:(1)设直线AB的解析式为y=kx+b,
将A(0,2),B(2,0)代入解析式y=kx+b中,得
解得:
∴直线AB的解析式为y=-x+2
将D(-1,a)代入y=-x+2得:a=3
∴点D坐标为(-1,3),
将D(-1,3)代入y=中得:m=-3
∴反比例函数的解析式为y=-

(2)联立得:
解得:
∴点C坐标为(3,-),
过点C作CM⊥x轴于点M,则在Rt△OMC中,CM=,OM=3,
∴tan∠COM==,∴∠COM=30°,
在Rt△AOB中,tan∠ABO===
∴∠ABO=60°,
∴∠ACO=∠ABO-∠COE=30°;

(3)如图,若OC′⊥AB,则有∠BNO=90°,
∵∠NBO=60°,∴∠BON=30°,
∵∠COM=30°,
∴∠COC′=∠COM+∠BON=60°,即旋转角为60°,
则当α=60°时,OC′⊥AB.
故答案为:60.
分析:(1)设直线AB解析式为y=kx+b,将A与B坐标代入求出k与b的值,确定出直线AB解析式,将D坐标代入直线AB解析式求出a的值,确定出D坐标,将D坐标代入反比例解析式求出m的值,即可确定出反比例解析式;
(2)联立直线AB与反比例解析式,求出交点C坐标,过C作CM垂直于x轴,在直角三角形COM值,利用锐角三角函数定义及特殊角的三角函数值求出∠COM的度数,在直角三角形AOB中,同理求出∠ABO的度数,由外角性质即可求出∠ACO的度数;
(3)根据题意画出图形,求出OC′⊥AB时的旋转角即可确定出α度数.
点评:此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,锐角三角函数定义,以及旋转的性质,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,AB为半圆的直径,C、D为半圆弧上的两点,若弧CD=弧BD,DC与BA的延长线交于P,如果,AP:CP=3:4,△ADB的面积为16
5
,则AP的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,AB是⊙O直径,∠C的两边分别与⊙O相切于A、D两点.DE⊥AB,垂足为E,AE=3,BE=1,则图中阴影部分面积(  )
A、4
3
-4π
B、
9
2
3
-
4
3
π
C、
9
2
3
-4π
D、4
3
-
4
3
π

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,抛物线y=x2-x-1与y轴交于C点,以原点O为圆心,以OC为半径作⊙O,交x轴于A、B两点,交y轴于另一点D.设点P为抛物线y=x2-x-1上的一点,作PM⊥x轴于点M,求使△PMB∽△ADB时的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线t=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交精英家教网于A点,过A、B、C三点的⊙P与y轴相切于点A,M为y轴负半轴上的一个动点,直线MB交抛物线于N,交⊙P于D.
(1)填空:A点坐标是
 
,⊙P半径的长是
 
,a=
 
,b=
 
,c=
 

(2)若S△BNC:S△AOB=15:2,求N点的坐标;
(3)若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.

查看答案和解析>>

同步练习册答案