精英家教网 > 初中数学 > 题目详情

如图,AD是△ABC外角∠CAE的平分线,如果AD∥BC,试判断△ABC 的形状,并说明理由.

解:△ABC是等腰三角形.
理由是:
∵AD是△ABC外角∠CAE的平分线(已知),
∴∠DAE=∠DAC(角平分线定义),
∵AD∥BC(已知),
∴∠DAE=∠B(两直线平行,同位角相等),
∠DAC=∠C(两直线平行,内错角相等),
∴∠B=∠C(等量代换),
∴AB=AC(等边对等角),
即△ABC是等腰三角形.
分析:由角平分线可得两个角相等,由平行线可得角相等,通过等量代换可得∠B=∠C,得到三角形为等腰三角形.
点评:本题考查了等腰三角形的判定;平行线与角平分线同时出现在一个题目中时,往往有等腰三角形出现,这是常识,注意应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案