精英家教网 > 初中数学 > 题目详情
在等腰△ABC中,AB=AC=5,BC=6,动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC,将△AMN沿MN所在的直线折叠,使点A的对应点为P。
(1)当MN为何值时,点P恰好落在BC上?
(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?
解:(1)连接AP,交MN于O,
∵将△AMN沿MN所在的直线折叠,使点A的对应点为P,
∴OA=OP,AP⊥MN,AN=PN,AM=PM,
∵MN∥BC,
∴△AMN∽△ABC,AO⊥MN,

∵BC=6,
∴MN=3,
∴当MN=3时,点P恰好落在BC上;
(2)过点A作AD⊥BC于D,交MN于O,
∵MN∥BC,
∴AO⊥MN,
∴△AMN∽△ABC,

∵AB=AC=5,BC=6,AD⊥BC,
∴∠ADB=90°,BD=BC=3,
∴AD=4,

∴AO=x,
∴S△AMN=
当AO≤AD时,
根据题意得:S△PMN=S△AMN
∴△MNP与等腰△ABC重叠部分的面积为S△AMN

∴当AO=AD时,即MN=BC=3时,y最小,最小值为3;
当AO>AD时, 连接AP交MN于O,则AO⊥MN,
∵MN∥BC,
∴AP⊥BC,△AMN∽△ABC,△PEF∽△PMN∽△AMN,

即:
∴AO=x,

∴EF=2x-6,OD=AD-AO=4-x,
∴y=S梯形MNFE=(EF+MN)·OD=×(2x-6+x)×(4x)=-(x-4)2+4,
∴当x=4时,y有最大值,最大值为4,
综上所述:当x=4时,y的值最大,最大值是4。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图所示,在等腰△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,图中有几对全等三角形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区二模)如图,在等腰△ABC中,底边BC的中点是点D,底角的正切值是
1
3
,将该等腰三角形绕其腰AC上的中点M旋转,使旋转后的点D与A重合,得到△A′B′C′,如果旋转后的底边B′C′与BC交于点N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰△ABC中,AB=AC,∠A=80°,则一腰上的高CD与底边BC的夹角为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,
(1)试说明DE=DF;
(2)求EF长.

查看答案和解析>>

同步练习册答案