精英家教网 > 初中数学 > 题目详情

如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1-S2的值为________.

1
分析:根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1-S2=S△ACD-S△ACE计算即可得解.
解答:∵BE=CE,
∴S△ACE=S△ABC=×6=3,
∵AD=2BD,
∴S△ACD=S△ABC=×6=4,
∴S1-S2=S△ACD-S△ACE=4-3=1.
故答案为:1.
点评:本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,E、F分别是等腰△ABC的腰AB、AC的中点.用尺规在BC边上求作一点M,使四边形AEMF为菱形.
(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:AB、AC分别是⊙O的直径和弦,D为弧AC上一点,DE⊥AB于点H,交⊙O于点E,交AC于点F.P为ED延长线上一点,连PC.
(1)若PC与⊙O相切,判断△PCF的形状,并证明.
(2)若D为弧AC的中点,且
BC
AB
=
3
5
,DH=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB和AC分别是⊙O的直径和弦,OD⊥AC于D点,若OA=4,∠A=30°,则BD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F分别是正方形ABCD边BC、AD上的点,且BE=DF
求证:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.

查看答案和解析>>

同步练习册答案