精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线.
求证:BC=AB+AD.

解:过D作DE⊥BC,交BC于点E,
∵∠A=90°,
∴DA⊥AB,
∵BD是∠ABC的平分线,DA⊥AB,DE⊥BC,
∴DA=DE,
在Rt△ABD和Rt△EBD中,

∴Rt△ABD≌Rt△EBD(HL),
∴AB=BE,
又∵∠A=90°,且AB=AC,
∴△ABC为等腰直角三角形,
∴∠C=∠ABC=45°,又∠DEC=90°,
∴△DEC为等腰直角三角形,
∴DE=EC,
∴AD=EC,
则BC=BE+EC=AB+AD.
分析:过D作DE垂直于BC,由DA垂直于AB,且BD为角平分线,利用角平分线性质得出DA=DE,再由斜边BD为公共边,利用HL得出直角三角形ABD与直角三角形BED全等,由全等三角形的对应边相等得出AB=BE,由AB=AC,且BA与AC垂直得到三角形ABC为等腰直角三角形,可得出三角形DEC为等腰直角三角形,得出DE=EC,而BC=EB+EC,等量代换即可得证.
点评:此题考查了角平分线性质,全等三角形的判定与性质,以及等腰直角三角形的判定与性质,熟练掌握角平分线性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案