精英家教网 > 初中数学 > 题目详情
在⊙O中
AB
的度数为130°,则它所对的圆心角=
 
,所对的圆周角=
 
分析:根据圆心角的度数等于它所对的弧的度数,得到∠AOB=130°,再根据圆周角定理可得∠APB=
1
2
∠AOB=
1
2
×130°=65°.
解答:精英家教网解:如图,∠APB是弧AB所对的圆周角,
AB
的度数为130°,
∴∠AOB=130°,
∴∠APB=
1
2
∠AOB=
1
2
×130°=65°,
即弧AB的度数为65°.
点评:本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.
练习册系列答案
相关习题

科目:初中数学 来源:2011-2012学年北京十五中九年级上学期期中考试数学卷 题型:选择题

如图,在⊙O中,的度数为是ACB上一点,

D、E是AB上不同的两点(不与A、B两点重合),则

的度数为(     )

A.       B.        C.        D.        

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在⊙O中


AB
的度数为130°,则它所对的圆心角=______,所对的圆周角=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,的度数为160度,C是弧ACB上一点,

是弧AB上不同的两点(不与两点重合),则的度数为             .

查看答案和解析>>

科目:初中数学 来源:2012届北京十五中九年级上学期期中考试数学卷 题型:单选题

如图,在⊙O中,的度数为是ACB上一点,
D、E是AB上不同的两点(不与A、B两点重合),则
的度数为(    )

A.        B.       C.       D.        

查看答案和解析>>

同步练习册答案