精英家教网 > 初中数学 > 题目详情

如图,反比例函数 y=数学公式 的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
(1)求反比例函数与一次函数的函数关系式;
(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;______
(3)连接AO、BO,求△ABO的面积.

解:(1)∵反比例函数y=过A(1,3),
∴3=,即k=3,
∴此反比例函数的解析式为:y=
∵反比例函数y=过B(n,-1),
∴-1=,解得n=-3;
∵一次函数y=mx+b的图象交于两点A(1,3),B(-3,-1).
,解得
∴一次函数y=mx+b的解析式为:y=x+2;

(2)∵A(1,3),B(-3,-1),
由函数图象可知,当-3<x<0或x>1时一次函数的图象在反比例函数图象的上方,
∴当-3<x<0或x>1时一次函数的值大于反比例函数的值;

(3)∵直线AB的解析式为y=x+2,
∴D(0,2),
∴OD=2,
∵A(1,3),B(-3,-1),
∴S△ABO=S△AOD+S△ABD=×2×|-3|+×2×1=3+1=4.
分析:(1)把点(1,3)代入反比例函数y=即可求出k的值,进而求出反比例函数的解析式;再把点B的坐标代入反比例函数的关系式求出n的值,把AB两点坐标代入一次函数的关系式即可求出一次函数的关系式;
(2)由(1)中AB两点的坐标,结合函数图象可直接得出结论;
(3)根据(1)中求出的一次函数的关系式求出点D的坐标,再根据S△ABO=S△AOD+S△ABD进行解答;
点评:本题考查的是反比例函数与一次函数的交点问题及用待定系数法求一次函数及反比例函数的关系式,在解(2)时能根据函数的图象求解是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
与一次函数y=ax的图象交于两点A、B,若A点坐标为(2,1),则B点坐标为
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOC的面积;
(3)观察函数图象,写出当x取何值时,一次函数的值比反比例函数的值小?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
k
x
(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<
k
x
时,则x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2
x
在第一象限的图象上有一点P,PC⊥x轴于点C,交反比例函数y=
1
x
图象于点A,PD⊥y轴于点D,交y=
1
x
图象于点B,则四边形PAOB的面积为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
的图象经过A、B两点,点A、B的横坐标分别为2、4,过A作AC⊥x轴,垂足为C,且△AOC的面积等于4.
(1)求k的值;
(2)求直线AB的函数值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积;
(4)在x轴的正半轴上是否存在一点P,使得△POA为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案