精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,AB=1,BC为⊙O的直径,P是AD边上一点,BP交⊙O于点F,CF的延长线交AB于点E,连接PE.若CF=2EF,则PF的长为________.


分析:由BC为⊙O的直径,正方形ABCD,易证得AB是⊙O的切线,由弦切角定理,可得∠ABP=∠FCB,易证得△ABP≌△BCE,△CEB∽△CBF,即可得CE=BP,,又由AB=1,CF=2EF,可求得EF,CF,CE的长,然后由勾股定理可求得BF的长,继而求得答案.
解答:∵BC为⊙O的直径,
∴∠BFC=90°,
即BF⊥EC,
∵四边形ABCD是正方形,
∴AB=BC=1,∠ABC=∠A=90°,
∴AB是⊙O的切线,
∴∠ABP=∠FCB,
在△ABP和△BCE中,

∴△ABP≌△BCE(ASA),
∴BP=EC,
∵∠EBC=∠CFB=90°,∠EBF=∠FCB,
∴△CEB∽△CBF,

∵CF=2EF,

∴EF=
∴CF=2EF=,EC=3EF=
∴BP=
在Rt△BCF中,BF==
∴PF=BP-BF=-=
故答案为:
点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、切线的判定与性质、圆周角定理、正方形的性质以及勾股定理等知识.此题难度较大,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案