精英家教网 > 初中数学 > 题目详情

如图,已知二次函数y=ax2+bx+c的图象交x轴的负半轴于点A(-5,0),交y轴于点B,过点B作BC⊥y轴交函数y=ax2+bx+c的图象于点C(-2,4).

(1)设函数y=ax2+bx+c的图象与x轴的另一个交点为D,求△ABD的面积.
(2)若P为y轴上的一个动点,连接PA、PC,分别过A、C作PC、PA的平行线交于点Q,连接PQ.试探究:
①是否存在这样的点P,使得PQ2=PA2+PC2?为什么?
②是否存在这样的点P,使得PQ取得最小值?若存在,请求出这个最小值,并求出此时点P的坐标;若不存在,请说明理由.

解:(1)由题意知B(0,4),
∵C(-2,4),则抛物线对称轴为:x=-2,
根据抛物线的对称性可知:D(3,0).
∴S△ABD=×8×4=16.

(2)①不存在这样的点P,使得PQ2=PA2+PC2
理由如下:
∵AQ∥PC,CQ∥PA,
∴四边形OAQC为平行四边形.∴PC=AQ.
若PQ2=PA2+PC2,则PQ2=PA2+AQ2
∴∠PAQ=90°.∴∠APC=90°.
若∠APC=90°,
则当点P在线段OB上时,可得△PAO∽△CPB.
=
设OP=m,则=
即m2-4m+10=0.这个方程没有实数根.
而当P点在y轴的负半轴上或在OB的延长线时,∠APC=90°显然不可能成立.
综上所述,可得:不存在这样的点P,使得PQ2=PA2+PC2

②连接AC交PQ于点M,如图所示.
∵四边形PAQC为平行四边形,
∴M为AC、PQ的中点.
PQ取得最小值时,MP必定取得最小值.
显然,当P为OB的中点时,由梯形中位线定理可得MP∥CB,
∴MP⊥y轴.
此时MP取得最小值为:×(2+5)=
∴PQ的最小值为7.
PQ取得最小值时,P(0,2).
分析:(1)首先利用二次函数对称性得出对称轴,进而得出D点坐标,即可得出三角形面积;
(2)①首先得出四边形OAQC为平行四边形,若PQ2=PA2+PC2,则PQ2=PA2+AQ2,则∠PAQ=90°即∠APC=90°,进而得出△PAO∽△CPB,以及=,得出这样的点不存在;
②利用PQ取得最小值时,MP必定取得最小值,求出MP,的长,即可得出答案.
点评:此题主要考查了二次函数的综合应用以及平行四边形的性质和判定以及梯形的性质等知识,利用点到直线的距离得出MP的最小值是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(
5
2
13
4
),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的精英家教网三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(-1,0)和点B(3,0)两点(点A在点B的左边),与y轴交于点C.
(1)求此二次函数的解析式,并写出它的对称轴;
(2)若直线l:y=kx(k>0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出点D的坐标;若不存在,请说明理由;
(3)若直线l′:y=m与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+b与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上.点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与该二次函数的图象交于点E.
(1)求b的值及这个二次函数的关系式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)若点D为直线AB与该二次函数的图象对称轴的交点,则四边形DCEP能否构成平行四边形?如果能,请求出此时P点的坐标;如果不能,请说明理由.
(4)以PE为直径的圆能否与y轴相切?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).
(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.
(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)如图,已知二次函数y=-
12
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;
(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案