精英家教网 > 初中数学 > 题目详情
连续2次掷立方体骰子得到的点数依次为m,n,则以点A(0,0),B(4,-3),C(m,n)为顶点能构成等腰三角形的概率为   
【答案】分析:由题意知本题是一个古典概型,试验发生包含的事件数36种结果,而满足条件的事件是以点(0,0)、(1,-1)、(m,n)为顶点能构成等腰三角形,可以通过列举得到事件数,根据概率公式得到结果.
解答:解:由题意知本题是一个古典概型,
试验发生包含的事件数36种结果,
而满足条件的事件是以点(0,0)、(4,-3)、(m,n)为顶点能构成等腰三角形,
(4,3)与(3,4),(4,2),(1,1),共有4种结果,
根据古典概型概率公式得到概率是
故答案为:
点评:本题是一个古典概型,考查组成三角形的条件,是一个综合题,解题时重点和难点在能否构成三角形,本题通过列举得到结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子得到的数m,n作为点P的坐标,则点P落在反比例函数y=
6
x
图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是(  )
A、
1
8
B、
2
9
C、
12
19
D、
7
18

查看答案和解析>>

科目:初中数学 来源: 题型:

一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子得到的数m和n作为点P的坐标,则点P在反比例函数y=
6
x
与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是
7
18
7
18

查看答案和解析>>

科目:初中数学 来源: 题型:

连续2次掷立方体骰子得到的点数依次为m,n,则以点A(0,0),B(4,-3),C(m,n)为顶点能构成等腰三角形的概率为
 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

连续2次掷立方体骰子得到的点数依次为m,n,则以点A(0,0),B(4,-3),C(m,n)为顶点能构成等腰三角形的概率为________.

查看答案和解析>>

同步练习册答案