精英家教网 > 初中数学 > 题目详情

在矩形ABCD中,点E是AD的中点,EF⊥BE交CD于点F.
(1)当AB=BC时,求sin∠FBC;
(2)过F作GF⊥BF交BE的延长线于点G,求证:数学公式

(1)解:∵在矩形ABCD中,AB=BC,
∴四边形ABCD是正方形,
∴AB=AD=CD=BC,∠A=∠D=90°,
∴∠AEB+∠ABE=90°,
∵EF⊥BE,
∴∠AEB+∠DEF=90°,
∴∠ABE=∠DEF,
∴△ABE∽△DEF,
∴AB:DE=AE:DF,
∵点E是AD的中点,
∴DE=AE=AD=AB,
∴DF=AB,
∴CF=AB,
∴BF==AB,
∴sin∠FBC==

(2)由(1)知△ABE∽△DEF,
==
设DE=AE=a,AB=CD=b,则AD=BC=2a.
==
∴DF=
在△BEF与△FEG中,
∵∠BFE=∠G=90°-∠EFG,∠BEF=∠FEG=90°,
∴△BEF∽△FEG,
∴BE:FE=EF:EG,
=,∴可设EF=ak,则BE=bk(k≠0).
∴EG===
==
==
=
分析:(1)先由有一组邻边相等的矩形是正方形证明出四边形ABCD是正方形,得出AB=AD=CD=BC,再根据有两个角对应相等的三角形相似得出△ABE∽△DEF,由相似三角形对应边成比例得出AB:DE=AE:DF,然后根据三角函数的定义即可求出sin∠FBC;
(2)先由△ABE∽△DEF,得出==.设DE=AE=a,AB=CD=b,设EF=ak,则BE=bk(k≠0),则DF=.再由△BEF∽△FEG,得出BE:FE=EF:EG,则可用含a、b、k的代数式表示EG,然后分别计算,即可得证.
点评:本题考查了矩形的性质,正方形与相似三角形的判定与性质,勾股定理,三角函数的定义,综合性较强,难度中等,(2)中设出辅助未知数可使解题简便.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

1、如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.即DF=
AB
.(写出一条线段即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图所示,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,则四边形DFEC的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点E,F分别在边AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州)如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

同步练习册答案