精英家教网 > 初中数学 > 题目详情
12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,下列结论一定成立的是(  )
A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)

分析 延长BE、CD相交与点A′,四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.

解答 解:延长BE、CD相交与点A′.

∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,
∴2∠A+180°-∠2+180°-∠1=360°,
∴2∠A=∠1+∠2.
故选:B.

点评 本题主要考查的是翻折变换、四边形的内角和是360°,掌握此类辅助线的作法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年浙江省八年级3月月考数学试卷(解析版) 题型:单选题

在二次根式中,字母x的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,将BM′绕点O按逆时针方向旋转45°后得到△A′OB′,若△AOB=15°,则∠AOB′的度数是30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)猜想∠1、∠2、∠3的数量关系,并说明理由.
(2)如图2,将折一次改为折二次,若∠1=40°,∠2=60°,∠3=70°,则∠4=50°.
(3)如图3,若改为折多次,直接写出∠1,∠2,∠3,…,∠2n-1,∠2n之间的数量关系:∠1+∠3+∠5+…+∠2n-1=∠2+∠4+…+∠2n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,正方形网格中的每个小正方形=边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.
(1)在图甲中,画出一个平行四边形,使其面积为6;
(2)在图乙中,画出一个正方形,使其面积为5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,将△ABC绕点B顺时针旋转40°得到△DBE,若此时点A的对应点D恰好落在边AC上,且∠ABE=90°,则∠C的度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
【探究展示】
(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源:2017届浙江省平阳县名校九年级下学期第一次模拟统练数学试卷(解析版) 题型:解答题

在平面直角坐标系中,直线轴、轴分别交于点B、 A,点D、E分别是AO、AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;与此同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为.

(1)分别写出点P和Q坐标(用含t的代数式表示);

(2)①当点Q在BE之间运动时,设五边形PQBOD的面积为(cm2),求y与t之间的函数关系式;

②在①的情况下,是否存在某一时刻t,使PQ分四边形BODE两部分的面积之比为S△PQE:S五边形PQBOD=1:29?若存在,求出此时t的值;若不存在,请说明理由;

(3)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,当t为何值时,⊙P能与△ABO的一边相切?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.tan45°的值等于(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

同步练习册答案