解:(1)

(2)由于BF=DB=2(米),即∠D=45°,
所以,DP=OP=灯高,
△COP中AE⊥CP,OP⊥CP,
∴AE∥OP
∴△CEA∽△COP,即

,
设AP=x,OP=h则:

①,
DP=OP表达为2+4+x=h②,
联立①②两式得:
x=4,h=10,
∴路灯有10米高.
分析:(1)连接DF并延长与CE的延长线交与一点即可得到路灯的位置;
(2)先根据竹竿和影长之间的数量关系求得∠D=45°,∠POC=30°,找到DC与灯高之间的数量关系CD=OP,根据线段之间是和差关系得到DC=DB+BA-CA,代入对应数据即可求出CD长为5米,从而求出灯高.
点评:有关中心投影的题目,可利用直角三角形和相似三角形的性质求解.本题中主要是利用了含特殊角30度,45度的直角三角形的特殊性质来求得相关线段之间的数量关系来求灯高.要知道含45度角的直角三角形的两条直角边相等,含30度角的直角三角形的短直角边等于斜边的一半.