精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长为2数学公式,过点A作AE⊥AC,AE=1,连接BE,则tanE=________.


分析:延长CA使AF=AE,连接BF,过B点作BG⊥AC,垂足为G,根据题干条件证明△BAF≌△BAE,得出∠E=∠F,然后在Rt△BGF中,求出tanF的值,进而求出tanE的值.
解答:解:延长CA使AF=AE,连接BF,过B点作BG⊥AC,垂足为G,
∵四边形ABCD是正方形,
∴∠CAB=45°,
∴∠BAF=135°,
∵AE⊥AC,
∴∠BAE=135°,
∴∠BAF=∠BAE,
∵在△BAF和△BAE中,

∴△BAF≌△BAE(SAS),
∴∠E=∠F,
∵四边形ABCD是正方形,BG⊥AC,
∴G是AC的中点,
∴BG=AG=2,
在Rt△BGF中,
tanF==
即tanE=
故答案为
点评:本题主要考查了正方形的性质,解答本题的关键是熟练掌握全等三角形的判定定理,此题能正确作出辅助线也是解答关键所在,此题是一道不错的中考试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案