精英家教网 > 初中数学 > 题目详情

如图,点P在⊙O的直径AB的延长线上,PC切⊙O于点C,∠P=30°,连接AC,BC.
(1)求证:2PB=AB.
(2)若AC=4数学公式cm,求⊙O的半径r.

(1)证明:连接OC,
∵PC切⊙O于点C,
∴PC⊥OC,
又∠P=30°,∴
∴2PB=2OB=AB.

(2)解:在Rt△POC中,由(1)可知∠POC=60°,又OB=OC,
∴△OBC是正三角形,∴∠ABC=60°;
∵AB是⊙O的直径,∴△ABC是直角三角形;

,解得AB=8;
∴⊙O的半径
分析:(1)连接OC,由于PC与⊙O相切,那么△PCO为直角三角形,根据∠P的度数,即可得OP=2OC,即BP=OC,由此可得BP等于⊙O的半径,而AB是⊙O的直径,即可得证.
(2)易知∠ABC=2∠P=60°,在Rt△ABC中,通过解直角三角形即可得AB的长,进而可求得⊙O的半径.
点评:此题主要考查了切线的性质以及解直角三角形的相关知识,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2.
(1)P是OB上一个动点,动点 Q在 PB或其延长线上运动,OP=PQ,作以 PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,直到点P与点B重合,设OP=x,正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与x的函数关系式;
(2)在(1)中,当x分别取1和3时,y的值分别是多少?
(3)已知直线l:y=ax-a都经过一定点A,求经过定点A且把矩形OBCD面积平均分成两部分的直线的关系式和A点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是一张传说中的“藏宝图”,图上除标明了A﹑B﹑C三点的位置以外,并没有直接标出”宝藏”的位置,但图上注有寻找“宝藏”的方法:把直角△ABC补成矩形,使矩形的面积是A精英家教网BC的2倍,“宝藏”就在矩形未知的顶点处,那么“宝藏”的位置可能是
 
.(用坐标表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2,点P是射线OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,运动速度是1个单位/秒,运动时间为t秒,直到点P与点B重合为止.
(1)设正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与t的函数关系式;
(2)y=2时,求t的值;
(3)当t为何值时,三角形CSR为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙湾区一模)如图,热气球从山顶A竖直上升至点B需25秒,点D在地面上,DC⊥AB,垂足为C,从地面上点D分别仰视A,B两点,测得∠ADC=20°,∠BDC=60°,若CD=130米.求该热气球从山顶A竖直上升至点B的平均速度.(结果精确到0.1米/秒)
(参考数据:tan20°≈0.36,tan30°=0.58,tan60°≈1.73,tan70°≈2.75)

查看答案和解析>>

科目:初中数学 来源:中学学习一本通 数学 九年级下册 北师大课标 题型:044

如图所示,在小山的东侧A处有一热气球沿着与竖直方向夹角为的方向向东飞行,每分钟飞行28 m,半小时后到达C处,这时气球上的人发现,在A处的正西方向有一处着火点B,5分钟后,在D处测得着火点日的俯角是,求热气球升空点A与着火点B的距离.(结果精确到l m)

查看答案和解析>>

同步练习册答案