精英家教网 > 初中数学 > 题目详情

已知:如图,在菱形ABC中,点E、F分别在边BC、CD上,BE=DF,AE与BD交于点M,AF与BD交于点N.
(1)求证:∠BAF=∠DAE;
(2)若AD=5,DF=3,求:数学公式的值.

(1)证明:∵四边形ABCD为菱形,
∴AB=AD,∠ABE=∠ADF,
而BE=DF,
∴△ABE≌△ADF,
∴∠BAE=∠DAF,
∴∠BAF=∠DAE;

(2)解:∵四边形ABCD为菱形,
∴AD∥BC,
∴△BEM∽△DAM,
=,即=
=
分析:(1)根据菱形的性质得AB=AD,∠ABE=∠ADF,则可根据“SAS”判断△ABE≌△ADF,于是有∠BAE=∠DAF,然后利用等量变换后易得到结论
(2)根据菱形的性质得到AD∥BC,再根据三角形相似的判定方法得到△BEM∽△DAM,利用相似比得到=,然后根据比例性质可计算出=
点评:本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截得的三角形与原三角形相似;相似三角形的对应角相等,对应边的比相等.也考查了菱形的性质以及三角形全等的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.
(1)求证:△ABE≌△ADF;

(2)过点C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.
(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在菱形ABCD中,AE⊥BC于点E,BE=12,sinD=
513

(1)求菱形的边长;
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案