精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD的面积为144,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为84.5,那么BE=
5
5
分析:由于四边形ABCD是正方形,那么CB=CD,∠D=∠CBE=90°,∠BCD=∠BCF+∠DCF=90°,而△CEF是直角三角形,可知
∠ECF=∠BCE+∠BCF=90°,利用同角的余角相等可得∠DCF=∠BCE,可利用ASA证明△BCE≌△DCF,结合Rt△CEF的面积为84.5,易求CE,再结合正方形的面积等于144,可知CB2=144,在Rt△CBE中利用勾股定理可求BE.
解答:解:如图,
∵四边形ABCD是正方形,
∴CB=CD,∠D=∠CBE=90°,∠BCD=∠BCF+∠DCF=90°,
∵△CEF是直角三角形,
∴∠ECF=∠BCE+∠BCF=90°,
∴∠DCF=∠BCE,
在△BCE和△DCF中,
∠D=∠CBE
CB=CD
∠DCF=∠BCE

∴△BCE≌△DCF,
∴CE=CF,
∵S△ECF=84.5,
1
2
CE•CF=84.5,
∴CE2=169,
∴CE=13,
∵S正方形ABCD=BC2=144,
∴在Rt△CBE中,BE2=CE2-BC2=169-144=25,
∴BE=5.
故答案为:5.
点评:本题考查了正方形的面积、全等三角形的判定和性质、勾股定理,解题的关键是先证明△BCE≌△DCF,得出CE=CF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案