精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AC⊥BD,AC=BC,CF=CD,DF的延长线交AB于E,求证BF=AD,BF⊥AD.

答案:
解析:

如图,延长BFADM

因为ACBD

所以∠FCB=∠ACD90°;

在△BFC和△ADC中,

所以△BFC≌△ADC(SAS)

所以BFAD,∠1=∠2

在△BFC和△AMF中,

1=∠2,∠BFC=∠AFM

所以∠AMF=∠ACB90°.

所以BFAD


提示:

首先根据条件容易证明△BFC和△ACD全等,进而得到BFAD,在根据全等的性质进行下一步的证明.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案