精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ACB=90°.

(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)

①作AC的垂直平分线,交AB于点O,交AC于点D;

②以O为圆心,OA为半径作圆,交OD的延长线于点E.

(2)在(1)所作的图形中,解答下列问题.

①点B与⊙O的位置关系是_;(直接写出答案)

②若DE=2,AC=8,求⊙O的半径.

(1)画图见解析;(2)(2)①点B在⊙O上;②⊙O的半径为5. 【解析】试题分析:(1)分别以A、C为圆心,以大于线段AC一半的长度在线段AC上下两侧画弧。连接交点级为线段AC的垂直平分线,交AB于点O,交AC于点D。 (2)比较OB和OA的长,如果OA=OB则点B 在圆上,利用垂直平分线的性质,及角与角之间的等量代换,可证明OA=OB。利用勾股定理,放在∆AOD中求半径。 试...
练习册系列答案
相关习题

科目:初中数学 来源:浙江省杭州市白马湖2017-2018学年八年级上学期期中数学试卷(含解析) 题型:填空题

等腰三角形中有一个角等于,则这个等腰三角形的顶角度数是__________.

或 【解析】(1)当30°的角为顶角时,这个等腰三角形的顶角度数为30°; (2)当30°的角为底角时,这个等腰三角形的顶角度数为:180°-30°-30°=120°. 综上所述,这个等腰三角形的顶角度数为30°或120°.

查看答案和解析>>

科目:初中数学 来源:江苏省盐城市2016-2017学年八年级上学期期末考试数学试卷 题型:解答题

如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF平分∠ABE,EF=2,BF=4,求平行四边形ABCD的面积.

(1)证明见解析(2)8 【解析】试题分析:(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE; (2)由(1)知△ABE是等腰三角形,得出BF⊥AE,AF=2EF=4,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积= AE•BF,即可得出结果. (1)证明:∵四边形ABCD是平行四边形,...

查看答案和解析>>

科目:初中数学 来源:江苏省盐城市2016-2017学年八年级上学期期末考试数学试卷 题型:单选题

在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(   )

A. 5 B. 7 C. 9 D. 11

B 【解析】试题解析:∵D、E、F分别为AB、BC、AC中点, ∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB, ∴四边形DBEF为平行四边形, ∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7. 故选B.

查看答案和解析>>

科目:初中数学 来源:江苏省盐城市2017届九年级上学期期末考试数学试卷 题型:解答题

已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.

(1)求A、C两点的坐标和抛物线的函数关系式;

(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P的坐标;

(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.

(1)A(-8,0),C(0,6),; (2)点P的坐标为(,0) (3)点Q的坐标为(,0)或(,0). 【解析】(1)A(-8,0),C(0,6) (2)点P的坐标为(,0) (3)点Q的坐标为(,0)或(,0)

查看答案和解析>>

科目:初中数学 来源:江苏省盐城市2017届九年级上学期期末考试数学试卷 题型:填空题

如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长_.

【解析】如图,将△ACD绕点C逆时针旋转90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一点H,使得NH=NE,连接HE,PG. ∵AC=BC,∠ACB=90°, ∴∠CAB=∠CBA=45°, ∵DC=DE,∠CDE=90°, ∴∠DCE=45°, ∴∠ACD+∠BCG=45°, ∵∠ACD=∠BCP, ∴∠GCP=∠GCD=45°, ...

查看答案和解析>>

科目:初中数学 来源:江苏省盐城市2017届九年级上学期期末考试数学试卷 题型:填空题

据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为______________元.

6.8×108 【解析】试题解析: 故答案为:

查看答案和解析>>

科目:初中数学 来源:江苏省泰兴市2018届九年级上学期期末考试数学试卷 题型:解答题

先化简,再求值: ,其中a=-2.

【解析】试题分析:本题考查了分式的化简求值,先把除法转化为乘法,并把分子、分母分解因式约分化简,再计算分式的加减,最后代入求值即可. = = =. 当a=-2时, 原式=.

查看答案和解析>>

科目:初中数学 来源:江苏省2017-2018学年八年级上学期期末考试数学试卷 题型:解答题

如图,在平行四边形ABCD中,AB=2,AD=4,M是AD的中点,点E是线段AB上一动点(可以运动到点A和点B),连接EM并延长交线段CD的延长线于点F.

(1) 如图1,①求证:AE=DF; ②若EM=3,∠FEA=45°,过点M作MG⊥EF交线段BC于点G,请直接写出△GEF的的形状,并求出点F到AB边的距离;

(2)改变平行四边形ABCD中∠B的度数,当∠B=90°时,可得到矩形ABCD(如图2),请判断△GEF的形状,并说明理由;

(3)在(2)的条件下,取MG中点P,连接EP,点P随着点E的运动而运动,当点E在线段AB上运动的过程中,请直接写出△EPG的面积S的范围.

(1)FH=3; (2)等腰直角三角形,证明详见解析; (3) 1≤S≤2. 【解析】试题分析: (1)①由已知条件易证△AME≌△DMF,从而可得AE=DF,ME=MF;②由ME=MF结合MG⊥EF于点M可得GE=GF,即可得到△GEF是等腰三角形;过点F作FN⊥BA的延长线于点N,结合∠FEA=45°可得△FEN是等腰直角三角形,即可由ME的长度求得FN的长度; (2)过点G...

查看答案和解析>>

同步练习册答案