精英家教网 > 初中数学 > 题目详情

已知:在△ABC中,∠ACB=90°,AC=BC,E,F在斜边AB上,且∠ECF=45°.求证:AE2+BF2=EF2

证明:把△CBF绕点A顺时针旋转90°,得到△ACP.连接EP.
则△CBF≌△CAP.
∴BF=AP,CF=CP,∠CBF=∠CAP=45°.
∵∠ACB=90°,∠PCF=90°.
∴∠PCE=∠ECF=45°,
在△PCE和△FCE中,

∴△PCE≌△FCE(SAS).
∴EF=EP,
又∵∠PAE=45°+45°=90°,
∴AE2+AP2=EP2
即AE2+BF2=EF2
分析:利用已知首先得出△PCE≌△FCE,即可把EF,AE,BF放到一个直角三角形中,从而根据勾股定理即可证明.
点评:考查了全等三角形的判定与性质,旋转的性质和勾股定理.熟练掌握旋转的性质,充分运用全等三角形的性质找到相关的角和线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案