精英家教网 > 初中数学 > 题目详情
如图所示,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)。
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限。
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标。
解:(1)抛物线的对称轴为:直线x=-1,
∵抛物线过点C(0,-3),则
∴k=-4;
(2)如图,根据两点之间线段最短可知,当P点在线段AC上就可使PA+PC的值最小,又因为P点要在对称轴上,所以P点应为线段AC与对称轴直线x=-1的交点,
由(1)可知,抛物线的表达式为:
令y=0,则,解得:
则点A、B的坐标分别是A(-3,0)、B(1,0),
设直线AC的表达式为y=kx+b,
解得:
所以直线AC的表达式为y=-x-3,
当x=-1时,
所以,此时点P的坐标为(-1,-2);
(3)①依题意得:
当点M运动到抛物线的顶点时,△AMB的面积最大,
由抛物线表达式可知,抛物线的顶点坐标为(-1,-4),
∴点M的坐标为(-1,-4),
△AMB的最大面积
②如图,过点M作MH⊥x轴于点H,连结AM、MC、CB,
点M在抛物线上,且在第三象限,设点M的坐标为(),




时,四边形AMCB的面积最大,最大面积为
时,
∴四边形AMCB的面积最大时,点M的坐标为()。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河源二模)已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区一模)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示,抛物线对应的函数解析表达式只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示的抛物线是把y=-x2经过平移而得到的.这时抛物线过原点O和x轴正向上一点A,顶点为P;
①当∠OPA=90°时,求抛物线的顶点P的坐标及解析表达式;
②求如图所示的抛物线对应的二次函数在-
1
2
≤x≤
1
2
时的最大值和最小值.

查看答案和解析>>

同步练习册答案