科目:初中数学 来源: 题型:
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b
与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO=
,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
1.OH的长度等于___________;k=___________,b=____________;
2.是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG<
,写出探索过程.
![]()
查看答案和解析>>
科目:初中数学 来源:2012届浙江省杭州市春蕾、风帆、大成三校九年级第一次模拟数学卷(带解析) 题型:解答题
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b
与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO=
,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
【小题1】OH的长度等于___________;k=___________,b=____________;
【小题2】是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG<
,写出探索过程.![]()
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(福建厦门卷)数学(解析版) 题型:解答题
如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB. 如果点P
在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.
(1)判断点C(
,
) 是否是线段AB的“邻近点”,并说明理由;
(2)若点Q (m,n)是线段AB的“邻近点”,求m的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省杭州市春蕾、风帆、大成三校九年级第一次模拟数学卷(解析版) 题型:解答题
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b
与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO=
,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
1.OH的长度等于___________;k=___________,b=____________;
2.是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG<
,写出探索过程.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com