精英家教网 > 初中数学 > 题目详情
(2007•兰州)如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足______条件时,四边形DAEF是矩形;
②当△ABC满足______条件时,四边形DAEF是菱形;
③当△ABC满足______条件时,以D、A、E、F为顶点的四边形不存在.

【答案】分析:(1)、根据等边三角形的性质证△ABC≌△DBF≌△EFC,就有AD=EF,DF=CE,从而得证四边形DAEF是平行四边形;
(2)、当∠BAC=150°,∠DAE=360°-60°-60°-150°=90°,所以平行四边形DAEF是矩形;
当AB=AC≠BC,有AD=AE,所以平行四边形DAEF是菱形;
当∠BAC=60°,△FBC与△ABC重合,故以D、A、E、F为顶点的四边形不存在.
解答:(1)证明:∵△ABD和△FBC都是等边三角形,
BD=BA,BF=BC,∠DBA=∠FBC=60°,
∴∠DBA-∠FBA=∠FBC-∠FBA,
∴∠DBF=∠ABC.
在△ABC和△DBF中,
∴△ABC≌△DBF.(2分)
∴AC=DF=AE.(3分)
同理△ABC≌△EFC.
∴AB=EF=AD.(4分)
∴四边形ADFE是平行四边形.(6分)

(2)解:当∠BAC=150°,∠DAE=360°-60°-60°-150°=90°,
∴平行四边形DAEF是矩形.
当AB=AC≠BC,有AD=AE,
∴平行四边形DAEF是菱形.
当∠BAC=60°,△FBC与△ABC重合,故以D、A、E、F为顶点的四边形不存在.
点评:本题利用了等边三角形的性质和全等三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2007•兰州)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.
(1)求证:AH•AB=AC2
(2)若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE•AF=AC2
(3)若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP•AQ=AC2是否成立.(不必证明)

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《圆》(02)(解析版) 题型:选择题

(2007•兰州)如图,正方形ABCD内接于⊙O,点E在劣弧AD上,则∠BEC等于( )

A.45°
B.60°
C.30°
D.55°

查看答案和解析>>

科目:初中数学 来源:2007年甘肃省兰州市中考数学试卷(解析版) 题型:解答题

(2007•兰州)如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足______条件时,四边形DAEF是矩形;
②当△ABC满足______条件时,四边形DAEF是菱形;
③当△ABC满足______条件时,以D、A、E、F为顶点的四边形不存在.

查看答案和解析>>

科目:初中数学 来源:2005年四川省资阳市中考数学试卷(课标卷)(解析版) 题型:解答题

(2007•兰州)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.
(1)求证:AH•AB=AC2
(2)若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE•AF=AC2
(3)若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP•AQ=AC2是否成立.(不必证明)

查看答案和解析>>

同步练习册答案