精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,MN∥AC,直线MN将△ABC分割成面积相等的两部分.将△BMN沿直线MN翻折,点B恰好落在点E处,连接AE,若AE∥CN,则AE:NC=________.


分析:利用翻折变换的性质得出BE⊥MN,BE⊥AC,进而利用相似三角形的判定与性质得出对应边之间的比值与高之间关系,即可得出答案.
解答:解:连接BE,交MN于点I,交AG于点Z,
∵将△BMN沿直线MN翻折,点B恰好落在点E处,
∴BE⊥MN于点I,
∵MN∥AC,
∴BE⊥AC于点Z,
设△EMN与边AC交于点F、G∵MN∥AC,
∴△BMN∽△BAC,
∴(BI:BF)2 =S△BMN:S△BAC=1:2,
∴BI:BF=1:
∴ZI:BI=(-1):1,
∵△EMN是由△BMN翻折得到,
∴△EMN≌△BMN,
∴EI=BI,
∴ZI:EI=(-1):1,
==+1,
∴1+=+1,
∴EZ:ZI=:1,
∵AC∥MN,AE∥NC,
==
=
∴AE:NC=:1,
故答案为::1.
点评:此题主要考查了翻折变换的性质以及相似三角形的判定与性质和比例的性质,根据已知得出BE⊥MN,BE⊥AC,以及==是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案