精英家教网 > 初中数学 > 题目详情
已知的对角线AC 的垂直平分线与边AD、BC分别交于点E、F,如图.     求证:四边形AFCE是菱形.
证明:∵四边形ABCD是平行四边形,    
∴AE//CF.     
∴∠1=∠2.
又∠AOE=∠COF,OA=OC,
∴△AOE ≌△COF
∴OE=OF.
四边形AFCE是平行四边形.
又EF⊥ AC,
∴ 平行四边形AFCE是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过精英家教网程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,CD=8,BC=12,∠ACB=30°,E为BC边上一点,以BE为边作正三角形BEF,使正三角形BEF和梯形ABCD在BC的同侧.
(l)当正三角形BEF的顶点F恰好落在对角线AC上时,求BE的长;
(2)将(1)问中的正三角形BEF沿BC向右平移,记平移中的正三角形BEF为正三角形B′E′F′,当点E与点C重合时停止平移.设平移的距离为x,正三角形B′E′F′的边B′E′和E′F′分别与AC交于点M和点N,连接,DM,DN:
①设正三角形B′E′F′与△ABC重叠部分的面积为S,求S与x之间的函数关系式,并写出自变量x的取值范围,求当DN取得最小值时,求出S的值;
②是否存在这样的x,使三角形DMN是直角三角形?若存在,求出x的值;若不存在,请说明理由. 

查看答案和解析>>

科目:初中数学 来源: 题型:

请将下面证明中每一步的理由填在括号内:
如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm,求矩形对角线的长.
解:∵四边形ABCD是矩形,
∴AC=BD,且OA=OC=
1
2
AC
OB=OD=
1
2
BD
矩形的对角线相等且互相平分
矩形的对角线相等且互相平分

∴OA=OD.
∵∠AOD=120°,
∠ODA=∠OAD=
180°-120°
2
=30°
等边对等角
等边对等角

∵∠DAB=90°
矩形的四个角都是直角
矩形的四个角都是直角

∴BD=2AB=2×2.5=5
直角三角形30°角所对的直角边等于斜边的一半
直角三角形30°角所对的直角边等于斜边的一半

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=
k
x
的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=
k
x
的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=
10
7
S1

查看答案和解析>>

同步练习册答案