精英家教网 > 初中数学 > 题目详情

如图,⊙O的半径为6,线段AB与⊙O相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点E,设OA=x,CD=y.
(1)求BD长;
(2)求y关于x的函数解析式,并写出定义域;
(3)当CE⊥OD时,求AO的长.

解:(1)∵OC=OD,
∴∠OCD=∠ODC,
∴∠OCA=∠ODB,
∵∠BOD=∠A,
∴△OBD∽△AOC,

∵OC=OD=6,AC=4,

∴BD=9;

(2)∵△OBD∽△AOC,
∴∠AOC=∠B.
又∵∠A=∠A,
∴△ACO∽△AOB,

∵AB=AC+CD+BD=y+13,

∴y关于x的函数解析式为. 定义域为

(3)∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.
∴∠AOD=180°-∠A-∠ODC=180°-∠COD-∠OCD=∠ADO.
∴AD=AO,∴y+4=x,∴
(负值不符合题意,舍去).
∴AO=
分析:(1)易得△OBD∽△AOC,利用相似三角形的对应边成比例可得BD长;
(2)易得△ACO∽△AOB,利用相似三角形的对应边成比例可得y与x的关系式,根据y为正数及x为△AOC的一边可得x的取值范围;
(3)可利用等角对等边判断出AO=AD,结合(2)得到的关系式把相关数值代入求得合适的解即可.
点评:综合考查圆及相似三角形的知识;找到与所求线段相关的相似三角形是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案