精英家教网 > 初中数学 > 题目详情
27、如图,在△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上两点,若∠EAF=45°,试推断BE、CF、EF之间的数量关系,并说明理由.
分析:将△ABE绕点A顺时针旋转90°得△ACG,根据旋转的性质得AG=AE,CG=BE,∠1=∠B,∠EAG=90°,∠FCG=∠ACB+∠1=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;再根据∠EAF=45°,易证得△AGF≌△AEF,则有
FG=EF,即可得到BE、CF、EF之间的数量关系.
解答:解:BE、CF、EF之间的数量关系为:EF2=BE2+FC2
理由如下:
∵∠BAC=90°,AB=AC,
∴将△ABE绕点A顺时针旋转90°得△ACG,
连FG,如图,
∴AG=AE,CG=BE,∠1=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠1=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2
又∵∠EAF=45°,而∠EAG=90°,
∴∠GAF=90°-45°=45°,
而AG=AE,AF公共,
∴△AGF≌△AEF,
∴FG=EF,
∴EF2=BE2+FC2
点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了勾股定理以及三角形全等的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案