精英家教网 > 初中数学 > 题目详情
若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2
(1)利用配方法求出求根公式;
(2)用求根公式求证:x1+x2=,x1·x2=
(3)设方程x2-7x+3=0有两个实数根x1,x2,利用(2)的结论,不解方程求:①x12+x22
解:(1)ax2+bx+c=0(a≠0)
∵a≠0,
∴两边同时除以a得:二次项系数化为“1”得:
移项得:
配方得:

∵a≠0,
∴4a2>0,
当b2-4ac≥0时,直接开平方得:
∴x=
∴x1=,x2=
 (2)对于方程:ax2+bx+c=0(a≠0,且a,b,c是常数),
当△≥0时,利用求根公式,得x1=,x2=
∵x1+x2=
x1x2=
∴x1+x2=,x1·x2=是正确的;
(3)方程x2-7x+3=0中,
∵a=,b=-7,c=3,
∴b2-4ac=49-6=43>0,
则x1+x2=
①x12+x22=(x1+x22-2x1x2=142-2×6=196-12=184;
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c的关系是
a-b+c=0
a-b+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若一元二次方程ax2+bx+c=0中的二次项系数与常数项之和等于一次项系数,则方程必有一根是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象过点A(2,0),B(-2,-4),对称轴为直线x=-1.
(1)求这个二次函数的解析式;
(2)若-3<x<3,直接写出y的取值范围;
(3)若一元二次方程ax2+bx+c-m=0(a≠0,m为实数)在-3<x<3的范围内有实数根,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

若一元二次方程ax2+bx+c=0中的a=2,b=0,c=-1,则这个一元二次方程是(  )

查看答案和解析>>

同步练习册答案