精英家教网 > 初中数学 > 题目详情
如图,已知直线l的函数表达式为,且l与x轴,y轴分别交于A,B两点,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位长度的速度向点O移动,设点Q,P移动的时间为t秒。
(1)求出点A,B的坐标;
(2)当t为何值时,△APQ与△AOB相似?
(3)求出(2)中当△APQ与△AOB相似时,线段PQ所在直线的函数表达式。
解:(1)由
令x=0,得y=8,
令y=0,得x=6,
∴A,B的坐标分别为(6,0)、(0,8);
(2)由BO=8,AO=6,得AB=10,
当移动的时间为t时,AP=t,AQ=10-2t,

∴当时,


(秒),

∴当时,


(秒),
秒或秒,
经检验,它们都符合题意,此时△AQP与△AOB相似;
(3)当t=秒时,
,∴

∴线段PQ所在直线的函数表达式为
时,

设Q点的坐标为(x,y),则有


时,
∴Q的坐标为
设PQ的表达式为y=kx+b,
,∴
∴PQ的表达式为
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l与坐标轴相交于点A(2,0)、B(0,-3).
(1)求直线l的函数关系式;
(2)利用函数图象写出当函数值y>0时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=x与抛物线y=
1
2
x2交于A、B两点.
(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=
1
2
x2的函数值为y2.若y1>y2,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德宏州)如图,已知直线y=x与抛物线y=
1
2
x2
交于A、B两点.
(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=
1
2
x2
的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知直线y=2x+2交y轴于点A,交x轴于点B,直线l:y=-3x+9
(1)求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2)若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
(3)在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F.在抛物线上是否存在点H,使直线l、FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的
12
?若存在,求点H的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数的图象经过点A,B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0)
(1)求该反比例函数的解析式;
(2)求直线BC的解析式;
(3)当x为何值时,一次函数的函数值大于反比例函数的值.

查看答案和解析>>

同步练习册答案