精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与y=数学公式的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C′是点C关于y轴的对称点,请求出△ABC′的面积.

解:(1)∵直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),

解得
∴一次函数的解析式为y=x+2.
∵OB是△ACD的中位线,OA=3,OB=2,∴OD=3,DC=4.
∴C(3,4).
∵点C在双曲线y=上,
∴k2=3×4=12.
∴反比例函数的解析式为y=

(2)∵点C′是点C(3,4)关于y轴的对称点,
∴C′(-3,4).
∴AC′⊥AO.
∴S△ABC=S梯形AOBC′-S△ABO=(2+4)×3-3×2=6.
分析:(1)根据直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),代入解析式,求出k1和b的值,从而得出一次函数的解析式;再根据OB是△ACD的中位线,得出点C的坐标,最后代入双曲线y=,即可求出反比例函数的解析式.
(2)根据点C′是点C(3,4)关于y轴的对称点,求出C′的坐标,从而得出AC′⊥AO,最后根据S△ABC=S梯形AOBC′-S△ABO,代入计算即可.
点评:此题考查了一次函数和反比例函数,用到的知识点是运用待定系数法求函数的解析式,三角形的中位线,关键是列出求三角形面积的等式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案