精英家教网 > 初中数学 > 题目详情

如图,已知C是线段AB上一点,ACBC12AB16 cmDE分别是线段ACBC的中点,那么DE的长度是多少?若把ACBC的值改为23,其他条件不变,那么DE的长度是多少?你能发现什么规律?用自己的语言描述出来.

答案:
解析:

  解:当ACBC12时,根据题意,得

  DEACBCAB×168(cm)

  当ACBC23时,DE的长度仍为8 cm

  规律:无论ACBC的比值怎么变,DE的长度始终等于AB长度的一半.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:
PG
CG
=
PE
AG

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知CD是线段AB的垂直平分线,垂足为D,E是CD上一点.若∠A=60°,则下列结论中错误的是(  )
A、AE=BEB、AD=BDC、AB=ACD、ED=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C是线段AB的中点,则CD等于(  )
精英家教网
A、AD-BD
B、
1
2
(AD-BD)
C、
1
2
AB-BD
D、AD-
1
2
AB

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1
=
=
S2.(填“>”“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图①,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ADC与等边△CBE,试猜想AE与DB的大小关系,并证明.
(2)如图②,当等边△CBE绕点C旋转后,上述结论是否仍成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案