精英家教网 > 初中数学 > 题目详情

△ABC中,∠C=90°,∠A=30°,BC=3cm,则AC的长是________cm.


分析:先根据直角三角形的性质得出AC=AB,再根据勾股定理可得到AB2=AC2+BC2,把BC=3cm,AC=AB代入即可求出AC的长.
解答:∵∠C=90°,∠A=30°,
∴AC=AB,
∵AB2=AC2+BC2,BC=3cm,
∴(2AC)2=9+AC2,解得AC=±
∵AC>0,
∴AC=,即AC的长为
故应填:
点评:本题考查的是勾股定理及含30度角的直角三角形的特点,根据勾股定理得出直角三角形三边之间的数量关系式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,DE∥BC,DE与AB相交于D,与AC相交于E,若AC=8,EC=3,DB=4,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,则a+c=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=2,AB=3,D是AC上一点,E是AB上一点,且∠ADE=∠B,设AD=x,AE=y,则y与x之间的函数关系式是(  )
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=8,AC=6,BC=7,点D在AC上,AD=2,
(1)过点D画直线,使它截△ABC的两边所得的小三角形与△ABC相似(图形备用,标出与∠B相等的角);
(2)若截线与AB交于E,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在△ABC中,AB=3,BC=8,则AC的取值范围是
5<AC<11

查看答案和解析>>

同步练习册答案