精英家教网 > 初中数学 > 题目详情
抛物线y=
1
2
-5x2的对称轴为______轴,顶点坐标为______.
抛物线y=
1
2
-5x2的对称轴为y轴,顶点为(0,
1
2
).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙M与y轴的正半轴相切于点C,与x轴交于A(x1,0)、B(x2,0)两点,精英家教网且x2>x1>0,抛物线y=
12
(x2-5x+2m)经过A、B、C三点.
(1)求m的值;
(2)求sin∠AMB的值;
(3)在图中的曲线上是否存在点P,使以P、A、C为顶点的三角形与△COA相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某水库管理处记录2010年水库的水位高度y(m)与月份x(月)之间的关系如图所示:在1月至6月份水位呈抛物线上升,到6月份达到最高水位,并且持续三个月,从9月份水位开始以直线下降,12月份水位达到最低.
(1)试写出2010年水库水位高度y(m)与月份x(月)之间的函数关系;
(2)当水位达到或超过9米时,水库水位处在警戒状态,试通过计算说明水库处在警戒时间为几个月?
(3)若该管理处利用水库资源,大力发展水上乐园,从1月份起每月游乐收入W(万元)与月份x(月)之间的函数关系式为W=
0.7x+10  (1≤x≤6)
-1.5x+23.2  (6<x≤12)
,但水位到达警戒状态时,水上乐园必须关闭,暂停游乐.当警戒状态解除后,恢复游乐,问2010年该管理处游乐总收入为多少万元?
(4)为了在汛期水库和游客安全,并且在水位达到警戒状态时也能正常游乐,该管理处每月必须拿出资金进行防洪和维修,每月防洪维修费用Q(万元)与当月的水位高度y(m)之间的函数关系式为Q=
1
2
y,问2010年该管理处几月份的纯收入最高,最高为多少万元?(纯收入=游乐收入-防洪维修费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

某水库管理处记录2011年水库的水位高度y(m)与月份x(月)之间的关系如图所示:在1月至6月份水位呈抛物线上升,到6月份达到最高水位,并且持续三个月,从9月份水位开始以直线下降,12月份水位达到最低.
(1)试写出2011年水库水位高度y(m)与月份x(月)之间的函数关系;
(2)当水位达到或超过9米时,水库水位处在警戒状态,试通过计算说明水库处在警戒时间为几个月?
(3)若该管理处利用水库资源,大力发展水上乐园,从1月份起每月游乐收入W(万元)与月份x(月)之间的函数关系式为W=
0.7x+10(1≤x≤6)
-1.5x+23.2(6<x≤12)
,但水位到达警戒状态时,水上乐园必须关闭,暂停游乐.当警戒状态解除后,恢复游乐,问2010年该管理处游乐总收入为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•包河区一模)蔬菜基地种植某种蔬菜,由市场行情分析可知,1月份到6月份这种蔬菜的市场售价p(元/千克)与上市时间x(月份)的关系为p=-1.5x+12,这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线一部分,如图所示.
(1)若图中抛物线经过A、B两点,对称轴是直线x=6,写出它对应的函数关系式;
(2)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值是多少?
(收益=市场售价-种植成本)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案