精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求证:OF•DE=OE•2OH;
(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)

(1)证明:∵BD是直径,
∴∠DAB=90°.…
∵FG⊥AB,
∴DA∥FO.
∴△FOE∽△ADE.

即OF•DE=OE•AD.…
∵O是BD的中点,DA∥OH,
∴AD=2OH.…
∴OF•DE=OE•2OH.…

(2)解:∵⊙O的半径为12,且OE:OF:OD=2:3:6,
∴OE=4,ED=8,OF=6.…
代入(1)中OF•DE=OE•AD,得AD=12.
∴OH=AD=6.
在Rt△OHB中,OB=2OH,
∴∠OBH=30°,
∴∠BOH=60°.
∴BH=BO•sin60°=12×=6.…
∴S阴影=S扇形GOB-S△OHB=-×6×6=24π-18
分析:(1)由BD是直径,根据圆周角定理,可得∠DAB=90°,又由FG⊥AB,可得FG∥AD,即可判定△FOE∽△ADE,根据相似三角形的对应边成比例,即可得,然后由O是BD的中点,DA∥OH,可得AD=2OH,则可证得OF•DE=OE•2OH;
(2)由⊙O的半径为12,且OE:OF:OD=2:3:6,即可求得OE,DE,OF的长,由,求得AD的长,又由在Rt△ABC中,OB=2OH,可求得∠BOH=60°,继而可求得BH的长,又由S阴影=S扇形GOB-S△OHB,即可求得答案.
点评:此题考查了相似三角形的判定与性质、圆周角定理、平行线等分线段定理以及三角函数等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意证得△FOE∽△ADE是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案