分析 观察函数图象,写出直线y1=k1x+b在直线y2=k2x+b上方且直线y2=k2x+b在x轴上方所对应的自变量的范围即可.
解答 解:当x=-1时,y1=k1x+b=0,则x>-1时,y1=k1x+b>0,
当x=3时,y2=k2x+b=0,则x<3时,y2=k2x+b>0,
因为x>0时,y1>y2,
所以当0<x<3时,k1x+b>k2x+b>0,
即不等式组k1x+b>k2x+b>0的解集为0<x<3.
故答案为0<x<3.
点评 本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com