精英家教网 > 初中数学 > 题目详情

如图,A、B为两个新建生活小区,它们位于公路CD的同侧(沿公路CD已铺有宽带网).现要从公路CD上找一处接点,向A、B两个小区铺设宽带网.铺设工程费用为25000元/千米,已知AC=4km,BD=1km,CD=4km,则最少花费________元即可完成铺设工程.

25000
分析:由于铺设宽带网的工程费用为每千米25000元,是一个定值,现在要在CD上选择接点位置,使费用最省,意思是在CD上找一点P,使AP与BP的和最小,设E是A的对称点,使AP+BP最短就是使EP+BP最短.
解答:解:作A点关于直线CD的对称点E,连接BE,与CD交于点P,则PA+PB最短,过E作EF∥CD与BD延长线交于点F,由作图可知,
PA=EP,EF=CD=4km,AC=CE=DF=4km,
∴PA+PB=EP+PB=EB,
在Rt△BEF中,
EF=4km,BF=BD+DF=5km,
由勾股定理可得:BE2=BF2+EF2
BE2=52+42
解得:BE=
工程费用为:25000×=25000(元).
故答案为:25000
点评:本题主要考查求最短路线问题,关键是作出辅助线,构造出最短路线为斜边的直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah
,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:精英家教网
如图2,抛物线顶点坐标为点C(-1,-4),交x轴于点A(-3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第三象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
(1)规定新运算:a*b=ab-(a-b),则(2*3)*5=
 

(2)若
|a|
a
+
|b|
b
+
|c|
c
+
|d|
d
的值是-2,则
|ab|
ab
+
|bc|
bc
+
|cd|
cd
+
|ad|
ad
的值是
 

(3)已知y1=x2-2x4-3;y2=x3-2x5-3,当x=2008时,y1=a,y2=b.当x=-2008时,y1=c,y2=d.则|a-c|+b+d=
 

(4)如图,在直径AB为100的半圆中,分别截去直径为AC、BC的两个半圆,则图中阴影部分的周长
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•丰南区一模)阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)

(1)求抛物线解析式和线段AB的长度;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案