精英家教网 > 初中数学 > 题目详情

把一边长为40cm的正方形硬纸板的四周剪掉4个全等的矩形,将剩余部分折成一个有盖的长方体纸盒子(纸板的厚度忽略不计),若长方体纸盒子的表面积为550cm2,求此时长方体纸盒子的体积.

解:设剪掉的长方形盒子的高为xcm,根据题意得:
2(40-2x)(20-x)+2x(20-x)+2x(40-2x)=550,
解得:x1=-35(不合题意,舍去),x2=15.
则剪掉的长方形盒子的高为15cm.
40-2×15=10(cm),
20-15=5(cm),
此时长方体纸盒子的体积为:15×10×5=750(cm3);
答:此时长方体纸盒子的体积为750cm3
分析:先设剪掉的长方形盒子的高为xcm,利用折成的一个长方形盒子的表面积为550cm2,列出方程,求出长方形盒子的长、宽、高,再根据长方体的体积公式进行计算即可.
点评:此题主要考查了一元二次方程的应用,用到的知识点是长方体的表面积、长方体的体积公式;读懂题意,找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.

(1)要使折成的长方形盒子的底面积为324cm2,那么剪掉的正方形的边长为多少?
(2)折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
(1)折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

查看答案和解析>>

科目:初中数学 来源: 题型:

把一边长为40cm的正方形硬纸板,四角各剪一个同样大小的正方形,剩余部分可折成一个底面积为484cm2无盖的长方体盒子,那么剪掉的正方形的边长为多少?(纸板的厚度忽略不计)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把一边长为40cm的正方形硬纸板的四角各剪去一个同样大小的正方形,将剩余部分折成一个无盖的盒子.
(1)要使折成的盒子底面积为484cm2,那么剪掉的正方形边长为多少?
(2)折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形边长;如果没有,说明理由.

查看答案和解析>>

同步练习册答案