在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.
![]()
科目:初中数学 来源:2018年辽宁省抚顺市抚顺县中考数学一模试卷(解析版) 题型:解答题
某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
查看答案和解析>>
科目:初中数学 来源:2018年辽宁省抚顺市抚顺县中考数学一模试卷(解析版) 题型:单选题
东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
![]()
【答案】(1)b=﹣2a,顶点D的坐标为(﹣
,﹣
);(2)
;(3) 2≤t<
.
【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
(2)把点
代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;![]()
(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.
试题解析:(1)∵抛物线
有一个公共点M(1,0),
∴a+a+b=0,即b=?2a,
∴抛物线顶点D的坐标为
(2)∵直线y=2x+m经过点M(1,0),
∴0=2×1+m,解得m=?2,
∴y=2x?2,
则
得
∴(x?1)(ax+2a?2)=0,
解得x=1或
∴N点坐标为
∵a<b,即a<?2a,
∴a<0,
如图1,设抛物线对称轴交直线于点E,
![]()
∵抛物线对称轴为
设△DMN的面积为S,
(3)当a=?1时,
抛物线的解析式为:
有
解得:
∴G(?1,2),
∵点G、H关于原点对称,
∴H(1,?2),
设直线GH平移后的解析式为:y=?2x+t,
?x2?x+2=?2x+t,
x2?x?2+t=0,
△=1?4(t?2)=0,
当点H平移后落在抛物线上时,坐标为(1,0),
把(1,0)代入y=?2x+t,
t=2,
∴当线段GH与抛物线有两个不同的公共点,t的取值范围是
![]()
【题型】解答题
【结束】
25
如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:广东省广州市海珠区 2017 学年第二学期九年级综合练习数学试卷 题型:解答题
如图,在菱形 OA BC 中,已知点 B(8,4),C(5,0),
点 D 为 OB、AC 交点,点 P 从原点出发向 x 轴正方向运动;
(1) 在点 P 运动过程中,若∠OBP=900,求出点 P 坐标;
(2) 在点 P 运动过程中,若∠PDC+∠BCP=900,求出点 P 坐标;
(3) 点 P 在(2)的位置时停止运动,点 M 从点 P 出发沿 x 轴正方向运动,连结 BM,若点 P 关于BM 的对称点 P’到 AB 所在直线的距离为 2,求此时点 M 的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com