精英家教网 > 初中数学 > 题目详情

如图,已知AB⊥BD,CD⊥BD,点P在BD上,要使△ABP∽△PDC,可再添加的条件是________.

∠APB=∠PCD或∠PAB=∠CPD或=
分析:已知两个三角形的两个对应角∠B=∠D=90°.若由“两角法”判定它们相似时,只需添加另一组对应角相等即可;若由“两边及其夹角法”判定它们相似时,只需添加=
解答:如图,∵AB⊥BD,CD⊥BD,
∴∠B=∠D=90°.
∴只需添加∠APB=∠PCD或∠PAB=∠CPD或=,即可推知△ABP∽△PDC.
故答案是:∠APB=∠PCD或∠PAB=∠CPD或=
点评:本题考查了相似三角形的判定.此题为开放性试题,首先要找出已经满足的条件,然后再进一步分析需要添加的条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知AB⊥BD,ED⊥BD,C是BD上一点,AB=CD,BC=ED,那么下列结论中,不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE=
90
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,已知AB⊥BD,AC⊥CD,∠A=35°,则∠D的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)如图,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为(  )

查看答案和解析>>

同步练习册答案