解:(1)作AE⊥BC,DF⊥BC,垂足分为点E、F,则四边形ADFE是矩形,EF=AD=6,AE=DF,
由题意四边形ABCD是等腰梯形,AB=CD,∠AEB=∠DFC,
∴△ABE≌△DCF,
∴CF=BE=(BC-EF)÷2=3
∵梯形的面积为36,
∴DF=36×2÷(AD+BC)=36×2÷(6+12)=4
在Rt△CDF中,由勾股定理得CD=

=5;

(2)过点P作PG⊥BC于点G,则PG是△PCQ的高,有PG∥DF,
∴PG:DF=CP:CD,
∵DP=t,CD=5,DF=4,PC=CD-DP
∴PG=

,
∵CQ=2t,
∴S
△PCQ=

CQ•PG=

•2t•

=


(3)当P、Q、C三点构成的三角形是直角三角形时,有两种情况:
①当PQ⊥BC时,作DE⊥BC于E,

∴PQ∥DE,
∴

=

,
∴

=

,
∴t=

②当QP⊥CD时,

∵∠QPC=∠DEC=90°,∠C=∠C,
∴△QPC∽△DEC,
∴

=

,

=

,
∴t=

由①、②知:当t=

或

时,P、Q、C三点构成的三角形是直角三角形
分析:(1)作AE⊥BC,DF⊥BC,则四边形ADFE是矩形,△ABE≌△DCF,由勾股定理可求得CD的值;
(2)过点P作PG⊥BC于点G,则PG是△PCQ的高,由平行线的性质可求得高PG用t表示的代数式,而CQ=2t,故可求得S与t的关系式;
(3)分两种情况讨论:当PQ⊥BC时,作DE⊥BC于E,由平行线分线段成比例可求解;当QP⊥CD时,可由相似三角形的性质求解.
点评:本题考查了等腰梯形的性质,利用了平行线分线段成比价的性质、相似三角形的知识.注意处级(3)小题要分两种情况讨论.