精英家教网 > 初中数学 > 题目详情
下列图形中,若AB∥CD,能得到∠1=∠2的是
[       ]
A:
B:
C:
D:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解:
对于任意正实数a,b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,∴a+b≥2
ab
,只有点a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p

根据上述内容,回答下列问题:
(1)若m>0,只有当m=
 
时,m+
1
m
有最小值
 

(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥2
ab
,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线y=
12
x
(x>0)
上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab

又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根据上述内容,回答下列问题:在a+b≥2
ab
(a、b均为正实数)中,若ab为定值p,则a+b≥2
p
,当且仅当a、b满足
 
时,a+b有最小值2
p

(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
ab
成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=
4
x
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、在△ABC中,沿图示的中位线DE剪一刀,拼成如图1所示的平行四边形BCFD.请仿上述方法,按要求完成下列操作设计,并在规定位置画出图示:
(1)在△ABC中,若∠C=90°,沿着中位线剪一刀,可拼成矩形或等腰梯形,请将拼成的图形画在图2位置(只需画一个);
(2)在△ABC中,若AB=2BC,沿着中位线剪一刀,可拼成菱形,并将拼成的图形画在图3位置;
(3)在△ABC中,需增加条件
∠C=90°,AC=2BC
,沿着中位线剪一刀,拼成正方形,并将拼成的图形和符合条件的三角形一同画在图4位置;
(4)在△ABC中,若沿着某条线剪一刀,能拼成等腰梯形,请将拼成的图形画在图5位置(保留寻求剪裁线的痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:对于任意正实数a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有点a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p

根据上述内容,回答下列问题:
(1)若m>0,只有当m=
 
时,m+
1
m
有最小值
 

(2)思考验证:如图,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足精英家教网为D,AD=a,DB=b.
试根据图形验证a+b≥2
ab
,并指出等号成立时的条件.

查看答案和解析>>

同步练习册答案