精英家教网 > 初中数学 > 题目详情

定理求证:对角线互相平分的四边形是平行四边形.

已知:如图四边形ABCD,对角线AC、BD相交于点O,且OA=OC,OB=OD
求证:四边形ABCD是平行四边形
证明:在△AOD和△COB中,

∴△AOD≌△COB(SAS),
∴AD=CB,∠1=∠2
∴AD∥CB
∴四边形ABCD是平行四边形
分析:可经过证明三角形全等,求得一组对边平行且相等,即可证明是平行四边形.
点评:平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、定理求证:对角线互相平分的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区模拟)我们在几何的学习中能发现,很多图形的性质定理与判定定理之间有着一定的联系.例如:菱形的性质定理“菱形的对角线互相垂直”和菱形的判定定理“对角线互相垂直的平行四边形是菱形”就是这样.但是课本中对菱形的另外一个性质“菱形的对角线平分一组对角”却没有给出类似的判定定理,请你利用如图所示图形研究一下这个问题.
要求:如果有类似的判定定理,请写出已知、求证并证明.如果没有,请举出反例.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定理求证:对角线互相平分的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2012年北师大版九年级第二次联考数学试卷(解析版) 题型:解答题

我们在几何的学习中能发现,很多图形的性质定理与判定定理之间有着一定的联系.例如:菱形的性质定理“菱形的对角线互相垂直”和菱形的判定定理“对角线互相垂直的平行四边形是菱形”就是这样.但是课本中对菱形的另外一个性质“菱形的对角线平分一组对角”却没有给出类似的判定定理,请你利用如图所示图形研究一下这个问题.
要求:如果有类似的判定定理,请写出已知、求证并证明.如果没有,请举出反例.

查看答案和解析>>

同步练习册答案