精英家教网 > 初中数学 > 题目详情

如图,AD是△ABC的中线,BE⊥AD,CF⊥AD,垂足分别是E、F.请你探索线段BE与CF的数量关系,并证明你的结论.

解:BE=CF;
证明如下:
∵AD是△ABC的中线,
∴BD=CD;
又∵BE⊥AD,CF⊥AD,
∴∠E=∠CFD=90°;
∴在Rt△BDE和Rt△CDF中,

∴Rt△BDE≌Rt△CDF,
∴BE=CF(全等三角形的对应边相等).
分析:根据全等三角形的判定定理AAS判定Rt△BDE≌Rt△CDF,然后由全等三角形的对应边相等知BE=CF.
点评:本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质,全等三角形的对应边、对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案