精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,△ABC中,AD平分∠BAC,BD⊥AD于D,点E的BC边的中点,AB=6,AC=8,则DE长为________.

1
分析:延长BD交AC于F点.根据AD平分∠BAC,且AD⊥BD,证明△ABD≌△AFD,得D是BF的中点;又E为BC中点,所以DE是△BCF的中位线,利用中位线定理求解.
解答:解:延长BD交AC于F,
∵AD平分∠BAC,
∴∠FAD=∠BAD;
∵AD⊥BD,
∴∠ADF=∠ADB;
又AD=AD,
∴△ABD≌△AFD,
∴BD=DF,AF=AB=6cm,
∴CF=AC-AF=8-6=2,
∵E为BC中点,
∴DE=CF=×2=1;
故答案为:1.
点评:此题考查了三角形的中位线定理,关键是作辅助线构造全等三角形,证明D是BF的中点,从而证明DE是三角形的中位线,运用中位线定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案