精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,C为⊙O上一点,过点C作CE⊥AB,垂足为E,将△AEC沿AC翻折得到△AFC,AF交⊙O于点D,连接CD、OC.
(1)CF是⊙O的切线吗?请说明理由.
(2)当∠CAE=30°时,判断四边形AOCD是何种特殊四边形,并说明理由.

解:(1)CF是⊙O的切线.理由:
∵将△AEC沿AC翻折得到△AFC,CE⊥AB,
∴∠EAC=∠FAC,∠AFC=∠AEC=90°,
∴∠FAC+∠FCA=90°,
又∵AB是⊙O的直径,C在⊙O上,
∴OA=OC,
∴∠CAO=∠ACO,
∴∠ACO+∠FCA=90°,
即CF⊥OC,
∴CF是⊙O的切线;

(2)四边形AOCD是菱形.理由:
连接OD,
∵∠CAE=30°,
∴∠FAO=∠COB=2∠CAE=60°,
∴OC∥AD,
∵OA=OD,
∴△AOD是等边三角形,
∴AD=OA=OC,
∴AD=OC,
∴四边形AOCD是平行四边形,
∴四边形AOCD是菱形.
分析:(1)由折叠的性质,可得∠EAC=∠FAC,∠AFC=∠AEC=90°,又由OA=OC,易证得∠ACO+∠FCA=90°,即可证得CF是⊙O的切线;
(2)由∠CAE=30°,根据折叠的性质与圆周角定理,可证得AD∥OC,△AOD是等边三角形,即可证得四边形AOCD是菱形.
点评:此题考查了切线的判定、等腰三角形的性质、等边三角形的判定与性质以及菱形的判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案