精英家教网 > 初中数学 > 题目详情

画几个不同的四边形,使每个四边形中都有30°、90°、105°的角,量一量这些四边形中另一个角的度数,你能发现什么规律?

答案:略
解析:

解:图略,135°

规律:四边形的四个角的和为360°


提示:

方法规律:通过动手操作,总结规律,大胆猜想,进一步增强读者创新探究的能力.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•大兴区二模)阅读材料1:
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“分割--重拼”.如图1,一个梯形可以分割--重拼为一个三角形;如图2,任意两个正方形可以分割--重拼为一个正方形.
(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;
阅读材料2:
如何把一个矩形ABCD(如图6)分割--重拼为一个正方形呢?操作如下:
①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥OX,与半圆交于点I;
②如图6,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
(2)请依据上述操作过程证明得到的四边形EBHG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料1:
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“分割--重拼”.如图1,一个梯形可以分割--重拼为一个三角形;如图2,任意两个正方形可以分割--重拼为一个正方形.
(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;
阅读材料2:
如何把一个矩形ABCD(如图6)分割--重拼为一个正方形呢?操作如下:
①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥OX,与半圆交于点I;
②如图6,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
(2)请依据上述操作过程证明得到的四边形EBHG是正方形.

查看答案和解析>>

科目:初中数学 来源:北京同步题 题型:操作题

用两个全等的不等边三角形ABC和三角形ABC′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.

查看答案和解析>>

科目:初中数学 来源:2012年北京市大兴区中考数学二模试卷(解析版) 题型:解答题

阅读材料1:
把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“分割--重拼”.如图1,一个梯形可以分割--重拼为一个三角形;如图2,任意两个正方形可以分割--重拼为一个正方形.
(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;
阅读材料2:
如何把一个矩形ABCD(如图6)分割--重拼为一个正方形呢?操作如下:
①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥OX,与半圆交于点I;
②如图6,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
(2)请依据上述操作过程证明得到的四边形EBHG是正方形.

查看答案和解析>>

同步练习册答案